Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
2.
Pharmaceutics ; 16(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38399334

RESUMO

The aim of this study was to predict the cytochrome P450 3A (CYP3A)-mediated drug-drug interactions (DDIs) between saxagliptin and nicardipine using a physiologically based pharmacokinetic (PBPK) model. Initially, in silico and in vitro parameters were gathered from experiments or the literature to construct PBPK models for each drug in rats. These models were integrated to predict the DDIs between saxagliptin, metabolized via CYP3A2, and nicardipine, exhibiting CYP3A inhibitory activity. The rat DDI PBPK model was completed by optimizing parameters using experimental rat plasma concentrations after co-administration of both drugs. Following co-administration in Sprague-Dawley rats, saxagliptin plasma concentration significantly increased, resulting in a 2.60-fold rise in AUC, accurately predicted by the rat PBPK model. Subsequently, the workflow of the rat PBPK model was applied to humans, creating a model capable of predicting DDIs between the two drugs in humans. Simulation from the human PBPK model indicated that nicardipine co-administration in humans resulted in a nearly unchanged AUC of saxagliptin, with an approximate 1.05-fold change, indicating no clinically significant changes and revealing a lack of direct translation of animal interaction results to humans. The animal-to-human PBPK model extrapolation used in this study could enhance the reliability of predicting drug interactions in clinical settings where DDI studies are challenging.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38412282

RESUMO

CONTEXT: Glycemic variability and hypoglycemia during diabetes treatment may impact therapeutic effectiveness and safety, even when glycated hemoglobin (HbA1c) reduction is comparable between therapies. OBJECTIVE: We employed masked continuous glucose monitoring (CGM) during a randomized trial of dapagliflozin plus saxagliptin (DAPA+SAXA) vs insulin glargine (INS) to compare glucose variability and patient-reported outcomes (PROs). DESIGN: 24-week sub-study of a randomized, open-label, two-arm, parallel-group, phase 3b study. SETTING: Multicenter study (112 centers in 11 countries). PATIENTS: 283 adults with type 2 diabetes (T2D) inadequately controlled with metformin ± sulfonylurea. INTERVENTIONS: DAPA+SAXA vs INS. MAIN OUTCOME MEASURES: Changes in CGM profiles, HbA1c, and PROs. RESULTS: Changes from baseline in HbA1c with DAPA+SAXA were similar to those observed with INS, with mean difference [95% CI] between decreases of -0.12% [-0.37 to 0.12%], P = .33. CGM analytics were more favorable for DAPA+SAXA, including greater percent time in range (> 3.9 and ≤ 10 mmol/L; 34.3 ± 1.9 vs 28.5 ± 1.9%, P = .033), lower percent time with nocturnal hypoglycemia (area under the curve ≤ 3.9 mmol/L; 0.6 ± 0.5 vs 2.7 ± 0.5%, P = .007), and smaller mean amplitude of glycemic excursions (-0.7 ± 0.1 vs -0.3 ± 0.1 mmol/L, P = .017). Improvements in CGM were associated with greater satisfaction, better body weight image, less weight interference, and improved mental and emotional well-being. CONCLUSIONS: DAPA+SAXA and INS were equally effective in reducing HbA1c at 24 weeks, but people with T2D treated with DAPA+SAXA achieved greater time in range, greater reductions in glycemic excursions and variability, less time with hypoglycemia, and improved patient-reported health outcomes.

4.
Pharmaceutics ; 16(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38258116

RESUMO

A liver injury was recently reported for saxagliptin, which is a dipeptidyl peptidase-4 (DPP-4) inhibitor. However, the underlying mechanisms of saxagliptin-induced liver injury remain unknown. This study aimed to evaluate whether saxagliptin, a potent and selective DPP-4 inhibitor that is globally used for treating type 2 diabetes mellitus, binds to the nucleophiles in vitro. Four DPP-4 inhibitors, including vildagliptin, were evaluated for comparison. Only saxagliptin and vildagliptin, which both contain a cyanopyrrolidine group, quickly reacted with L-cysteine to enzyme-independently produce thiazolinic acid metabolites. This saxagliptin-cysteine adduct was also found in saxagliptin-administered male Sprague-Dawley rats. In addition, this study newly identified cysteinyl glycine conjugates of saxagliptin and 5-hydroxysaxagliptin. The observed metabolic pathways were hydroxylation and conjugation with cysteine, glutathione, sulfate, and glucuronide. In summary, we determined four new thiazoline-containing thiol metabolites (cysteine and cysteinylglycine conjugates of saxagliptin and 5-hydroxysaxagliptin) in saxagliptin-administered male rats. Our results reveal that saxagliptin can covalently bind to the thiol groups of cysteine residues of endogenous proteins in vivo, indicating the potential for saxagliptin to cause drug-induced liver injury.

5.
Acta Diabetol ; 61(1): 91-97, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37691025

RESUMO

AIMS: Type 2 diabetes mellitus (T2DM) increases the risk of major cardiovascular events. In SAVOR-TIMI53 trial, the excess heart failure (HF) hospitalization among patients with T2DM in the saxagliptin group remains poorly understood. Our aim was to evaluate left ventricular (LV) diastolic function after 6 months of saxagliptin treatment using cardiac magnetic resonance imaging (CMR) in patients with T2DM. METHODS: In this prospective study, 16 T2DM patients without HF were prescribed saxagliptin as part of routine guideline-directed management. CMR performed at baseline and 6 months after initiation of saxagliptin treatment were evaluated in a blinded fashion. We assessed LV diastolic function by measuring LV peak filling rate with correction for end-diastolic volume (PFR/LVEDV), time to peak filling rate with correction for cardiac cycle (TPF/RR), and early diastolic strain rate parameters [global longitudinal diastolic strain rate (GLSR-E), global circumferential diastolic strain rate (GCSR-E)] by feature tracking (FT-CMR). RESULTS: Among the 16 patients (mean age of 59.9, 69% males, mean hemoglobin A1c 8.3%, mean left ventricular ejection fraction 57%), mean PFR was 314 ± 108 ml/s at baseline and did not change over 6 months (- 2.7, 95% CI - 35.6, 30.2, p = 0.86). There were also no significant changes in other diastolic parameters including PFR/EDV, TPF, TPF/RR, and GLSR-E and GCSR-E (all p > 0.50). CONCLUSION: In T2DM patients without HF receiving saxagliptin over 6 months, there were no significant subclinical changes in LV diastolic function as assessed by CMR.


Assuntos
Adamantano/análogos & derivados , Diabetes Mellitus Tipo 2 , Dipeptídeos , Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Função Ventricular Esquerda , Volume Sistólico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estudos Prospectivos , Imageamento por Ressonância Magnética , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/tratamento farmacológico , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/etiologia
6.
Biomedicines ; 11(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38137521

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic progressive disease due to insulin resistance. Oxidative stress complicates the etiology of T2DM. Saxagliptin is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor, while Pioglitazone is a thiazolidinedione insulin sensitizer. This study aimed to assess the effect of Saxagliptin and Pioglitazone monotherapy and combination therapy on the biochemical and biological parameters in streptozotocin (STZ)-induced diabetic rats. METHODS: The study included thirty-five male albino rats. Diabetes mellitus was induced by intraperitoneal STZ injection (35 mg/kg). For a 1-month duration, rats were divided into five groups. Glucose homeostasis traits, lipid profiles, kidney functions, liver enzymes, and oxidative stress markers were measured. Gene expression of miRNA-29a, phosphoenolpyruvate carboxykinase (PEPCK), phosphoinositide-3-kinase (PI3K), and interleukin 1 beta (IL-1ß) was assessed using qRT-PCR. RESULTS: At a 1-month treatment duration, combination therapy improves oxidative stress markers more than either drug alone. The combination therapy had significantly higher levels of SOD, catalase, and GSH and lower levels of MDA compared to the monotherapy. Additionally, the diabetic group showed a significant increase in the expression levels of miRNA-29a, PEPCK, and IL-1ß and a significant decrease in PI3K compared to the normal control group. However, combination therapy of Saxagliptin and Pioglitazone was more effective than either Saxagliptin or Pioglitazone alone in reversing these results, especially for PEPCK and IL-1ß. CONCLUSIONS: Our findings revealed that combining Saxagliptin and Pioglitazone improves glycemic control and genetic and epigenetic expression profiles, which play an essential regulatory role in normal metabolism.

7.
Diagnostics (Basel) ; 13(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37685355

RESUMO

Left ventricular diastolic dysfunction (DD) is a subclinical cardiac abnormality in patients with type 2 diabetes mellitus (T2DM) that can progress to heart failure (HF) and increase cardiovascular risk. This prospective study evaluated the DD in T2DM patients without atherosclerotic cardiovascular disease after one year of incretin-based drugs added to standard treatment. Of the 138 enrolled patients (49.30% male, mean age 57.86 ± 8.82, mean T2DM history 5 years), 71 were started on dipeptidyl peptidase-4 inhibitor sitagliptin/saxagliptin, 21 on glucagon-like peptide-1 receptor agonist exenatide, and 46 formed the control group (metformin and sulphonylurea/acarbose). At baseline, 71 patients had grade 1 DD, another 12 had grade 2 and 3 DD, and 15 had indeterminate DD. After one year, DD was evidenced in 50 cases. Diastolic function improved in 9 cases, and 27 patients went from grade 1 to indeterminate DD. The active group benefited more, especially patients treated with exenatide; their metabolic and inflammation profiles also improved the most. An in-depth analysis of echocardiographic parameters and paraclinical results in the context of literature data justifies the conclusion that early assessment of diastolic function in T2DM patients is necessary and the benefits of affordable incretin-based treatment may extend to subclinical cardiovascular manifestations such as DD.

8.
Biopharm Drug Dispos ; 44(6): 396-405, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596705

RESUMO

Gegenqinlian decoction (GQD) is a classic prescription of traditional Chinese medicine (TCM), which originated from Shanghanlun. The combination of GQD and hypoglycemic drugs (saxagliptin, Sax, metformin) is often used to treat Type 2 diabetes mellitus (T2DM) in TCM clinics. However, the herb-drug interactions (HDIs) between GQD and hypoglycemic drugs are still unclear. In order to determine the safety of the combination, we assessed the influences of GQD on the pharmacokinetics and pharmacodynamics of Sax in T2DM rats. The plasma concentration of Sax (5 mg/kg) pretreated with GQD (freeze-dried powder, 1.35 g/kg) or not was determined by high-performance liquid chromatography (HPLC), and pharmacokinetics parameters were calculated. The influence of GQD on the pharmacodynamics of Sax was investigated by detecting the levels of weight, (see abbreviations list) OGTT, TC, TG, LDL-C, HDL-C, FBG, FINS, HOMA-IR, QUICKI, AST, ALT, and the liver coefficient. The Cmax , AUC0-t ,and AUC0-∞ of Sax increased significantly in the combination group whether in normal or T2DM rats. The results of pharmacodynamics showed that the weight of rats in each treatment group increased. FBG, TC, TG, LDL-C, and HOMA-IR decreased, HDL-C, FINS, and QUICKI increased significantly (p < 0.05) compared with the model control group. The result showed that the combination of GQD and Sax could not only improve the hypoglycemic effect but also increase the plasma exposure of Sax. The potential HDIs between GQD and Sax should be taken into consideration in clinics. Moreover, for the complexity of the human compared with experimental animals, as well as genetic differences, the in-depth study should be carried out to assess the uniformity of the pharmacokinetics and pharmacodynamics between rats and humans.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Humanos , Ratos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , LDL-Colesterol/uso terapêutico , Medicamentos de Ervas Chinesas/farmacocinética , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
9.
Int Immunopharmacol ; 120: 110364, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37224651

RESUMO

BACKGROUND: Flap necrosis is a common issue encountered in clinical flap transplantation surgery. Here, we assessed the effects of saxagliptin, a dipeptidyl peptidase-4 inhibitor, on flap survival and explored the underlying mechanisms. METHODS: A dorsal McFarlane flap model was established in 36 rats, which were randomly divided into a high-dose saxagliptin (HS) group (saxagliptin, 30 mg/kg/day, n = 12), low-dose saxagliptin (LS) group (saxagliptin, 10 mg/kg/day, n = 12), and control group (n = 12). On day 7, flap survival was examined by eye in six rats from each group, along with determination of blood perfusion by laser Doppler flowmetry and angiogenesis by angiography. The remaining rats were sacrificed for harvesting of flap tissue. The status of the flap tissue was examined histopathologically by staining with hematoxylin and eosin (H&E). Oxidative stress was evaluated by determination of superoxide dismutase (SOD) activity and malonaldehyde (MDA) content. Gasdermin D (GSDMD), vascular endothelial growth factor (VEGF), tumor necrosis factor-α (TNF-α), NOD-like receptor pyrin domain containing 3 (NLRP3), interleukin (IL)-6, IL-18, Toll-like receptor 4 (TLR4), IL-1ß, caspase-1, and nuclear factor-κB (NF-κB) expression were detected by immunohistochemical analysis. RESULTS: The experimental group exhibited a larger area of flap survival, with more blood perfusion and neovascularization and better histopathological status than the control group. The degree of oxidative stress and the levels of NF-κB, TLR4, proinflammatory cytokines, and pyroptosis-associated protein were decreased in the experimental group, while the VEGF level was increased in a saxagliptin dose-dependent manner. CONCLUSION: Saxagliptin promotes random skin flap survival.


Assuntos
Receptor 4 Toll-Like , Fator A de Crescimento do Endotélio Vascular , Ratos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ratos Sprague-Dawley , NF-kappa B , Interleucina-6 , Proteína 3 que Contém Domínio de Pirina da Família NLR
10.
J Clin Pharmacol ; 63(7): 848-858, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36869593

RESUMO

The aim of the present study is to develop physiologically based pharmacokinetic (PBPK) models for saxagliptin and its active metabolite, 5-hydroxy saxagliptin, and to predict the effect of coadministration of rifampicin, a strong inducer of cytochrome P450 3A4 enzymes, on the pharmacokinetics of saxagliptin and 5-hydroxy saxagliptin in patients with renal impairment. The PBPK models of saxagliptin and 5-hydroxy saxagliptin were developed and validated in GastroPlus for healthy adults with or without rifampicin and adults with varying renal functions. Then, the effect of renal impairment combined with drug-drug interaction on saxagliptin and 5-hydroxy saxagliptin pharmacokinetics was investigated. The PBPK models successfully predicted the pharmacokinetics. For saxagliptin, the prediction suggests that rifampin greatly weakened the effect of renal impairment on reducing clearance, and the inductive effect of rifampin on parent drug metabolism seems to be increased with an increase in the degree of renal impairment severity. For patients with the same degree of renal impairment, rifampicin would have a slightly synergistic effect on the increase of 5-hydroxy saxagliptin exposure compared with dosed alone. There is an unsignificant decline for the saxagliptin total active moiety exposure values in patients with the same degree of renal impairment. It seems that patients with renal impairment are unlikely to require additional dose adjustments when coadministered with rifampicin, compared with saxagliptin alone. Our study provides a reasonable approach to explore unknown DDI potential in renal impairment.


Assuntos
Adamantano , Rifampina , Adulto , Humanos , Rifampina/farmacocinética , Dipeptídeos/farmacocinética , Interações Medicamentosas , Citocromo P-450 CYP3A/metabolismo , Modelos Biológicos
11.
Andrology ; 11(2): 295-306, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36113503

RESUMO

BACKGROUND: Diabetes mellitus-induced erectile dysfunction (DMED) is one of the complications of diabetes and has a poor response to phosphodiesterase type 5 inhibitor, the first-line treatment for ED. Saxagliptin (Sax), a dipeptidyl peptidase-4 inhibitor (DPP-4i), has been officially used in the treatment of type 2 diabetes. Stromal cell-derived factor-1 (SDF-1) is one of the important substrates of DPP-4, and has been proven to be beneficial for several DM complications. However, it is unknown whether Sax contributes to the management of DMED. OBJECTIVES: To explore the effect and possible underlying mechanisms of Sax in the treatment of DMED. METHODS: The model of DM was established by intraperitoneal injection of streptozotocin. All rats were divided into three groups (n = 8 per group): control group, DMED group and DMED+Sax group. In cellular experiments, the corpus cavernosum smooth muscle cells (CCSMCs) were exposed to high glucose (HG), and treated with Sax and AMD3100 (SDF-1 receptor inhibitor). The penile tissue and CCSMCs were harvested for detection. RESULTS: We found that erectile function was impaired in DMED rats compared with the control group, which was partially relieved by Sax. Decreased expression of DPP-4 and increased level of SDF-1 were also observed in DMED+Sax group, together with elevation of PI3K/AKT pathway and inhibition of endothelial dysfunction, oxidative stress and apoptosis in corpus cavernosum. Moreover, Sax could also regulate oxidative stress and apoptosis in CCSMCs under HG condition, which was blocked in part by AMD3100. CONCLUSION: Sax could alleviate DMED through increasing SDF-1 and PI3K/AKT pathway, in company with moderation of endothelial dysfunction, oxidative stress and apoptosis. Our findings indicated that DPP-4 is may be beneficial to the management of DMED.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Disfunção Erétil , Masculino , Humanos , Ratos , Animais , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Sprague-Dawley , Diabetes Mellitus Experimental/complicações , Pênis/metabolismo , Células Estromais/metabolismo
12.
Transpl Immunol ; 76: 101762, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36435353

RESUMO

Oxidative stress and apoptosis play vital role in diabetic rats suffering from renal ischemia reperfusion injury (IRI). As a dipeptidyl dipeptidase-4 (DPP-4) inhibitor, Saxagliptin(SAX)has been confirmed in the regulation of inflammation and apoptosis by targeting Nrf-2/HO-1signalling. The study was designed to explore the efficacy and potential mechanisms of SAX on inflammation and apoptosis for treating of IRI in diabetic rats. Through testing the expressions of Nrf-2, HO-1, Cleaved-Caspase9, Cleaved-Caspase3, Bax, BCL-2, Bak, Apaf-1, cytochrome C (Cytc), Cystatin C (CysC), ß2-microglobulin (ß2-MG), creatinine (Cr), urea nitrogen (BUN), TUNEL and pathological morphology, the effects of SAX on IRI diabetic rats have been investigatedg. The results has displayed SAX treatment significantly attenuate the cell apoptosis and pathological damage of kidney as well as lessening the expression of cleaved-caspase-9, cleaved-caspase3, Bax, cytoplasmic-Cytc, MDA, Bak, and Apaf-1 molecules, and the contents of ROS, Cr, CysC, ß2-MG, and BUN. Furthermore, SAX therapy also increased the expression of Nrf-2, BCL-2, HO-1 and mitochondrial cytochrome Cytc, and enhanced the activity of SOD, CAT and GPx. Therefore, our study has indicated that SAX treatment alleviated IRI in diabetic rats by suppressing oxidative stress and mitochondrial apoptotic pathways by activating the Nrf-2/HO-1 signaling.


Assuntos
Diabetes Mellitus Experimental , Traumatismo por Reperfusão , Ratos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Proteína X Associada a bcl-2/metabolismo , Estresse Oxidativo , Rim/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Inflamação/metabolismo
13.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364338

RESUMO

Background and Introduction: Saxagliptin is a hypoglycemic drug that acts as a dipeptidyl peptidase-4 (DPP-4) inhibitor and is preferably used in the treatment of Type 2 Diabetes Mellitus (T2DM). It is safe and tolerable; however, the major disadvantage associated with it is its low bioavailability. Aim: The present research aimed to enhance the bioavailability of the drug by enteric coating with a polymer that controls the rate of drug delivery, and it was prepared as Solid Lipid Nanoparticles (SLNs). Methodology: In the current study, various SLN formulations were developed using a central composite design (CCD) module using Design Expert-11 software. A modified solvent injection technique was used to prepare Saxagliptin nanoparticles coated with Eudragit RS100. The CCD was used to determine the independent variables and their effect on dependent variables at varied levels. Evaluation studies such as particle size analysis, Zeta potential, polydispersity index (PDI), drug loading, entrapment efficiency, in-vitro drug release studies, and in vivo pharmacokinetic studies were performed for the optimized SLN formulation. The reversed-phase HPLC method was developed and validated for the estimation of the pharmacokinetic parameters of the pure drug and prepared SLNs. Results: The effect of independent variables (A1: amount of lipid, A2: amount of polymer, A3: surfactant concentration, and A4: homogenization speed) on dependent variables (R1: particle size, and R2: entrapment efficiency) was established in great detail. Observed responses of the prepared and optimized Saxagliptin SLN were close to the predicted values by the CCD. The prepared SLNs depicted particle sizes in the range of 212-442 nm. The particle size analysis results showed that an increase in the lipid concentration led to an increase in particle size. The developed bioanalytical method was noted to be very specific and robust. The method accuracy varied from 99.16% to 101.95% for intraday, and 96.08% to 103.12% for inter day operation at low (5 mcg/mL), moderate (10 mcg/mL), and higher (15 mcg/mL) drug concentrations. The observed Zeta potential values for the prepared SLNs were in the range of -41.09 ± 0.11 to 30.86 ± 0.63 mV suggesting quite good stability of the SLNs without any aggregation. Moreover, the polydispersity indices were in the range of 0.26 ± 0.051 to 0.45 ± 0.017, indicative of uniformity of sizes among the prepared SLNs. In vivo study outcomes proved that Saxagliptin oral bioavailability significantly enhanced in male Albino Wistar Rats via SLN formulation and Eudragit RS100 coating approach. Conclusions: The developed and optimized Saxagliptin SLNs revealed enhanced Saxagliptin bioavailability in comparison to the native drug. Thus, this formulation strategy can be of great importance and can be implied as a promising approach to enhance the Saxagliptin bioavailability for facilitated T2DM therapy.


Assuntos
Diabetes Mellitus Tipo 2 , Nanopartículas , Ratos , Animais , Masculino , Lipídeos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Tamanho da Partícula , Ácidos Polimetacrílicos , Disponibilidade Biológica , Ratos Wistar , Hipoglicemiantes , Portadores de Fármacos
14.
Nanomaterials (Basel) ; 12(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364516

RESUMO

Delayed diabetic wound healing is an adverse event that frequently leads to limb disability or loss. A novel and promising vehicle for the treatment of diabetic wounds is required for clinical purposes. The biocompatible and resorbable poly (lactic-co-glycolic acid) (PLGA)-based fibrous membranes prepared by electrospinning that provide a sustained discharge of saxagliptin for diabetic wound healing were fabricated. The concentration of released saxagliptin in Dulbecco's phosphate-buffered saline was analyzed for 30 days using high-performance liquid chromatography. The effectiveness of the eluted saxagliptin was identified using an endothelial progenitor cell migration assay in vitro and a diabetic wound healing in vivo. Greater hydrophilicity and water storage were shown in the saxagliptin-incorporated PLGA membranes than in the pristine PLGA membranes (both p < 0.001). For diabetic wound healing, the saxagliptin membranes accelerated the wound closure rate, the dermal thickness, and the heme oxygenase-1 level over the follicle areas compared to those in the pristine PLGA group at two weeks post-treatment. The saxagliptin group also had remarkably higher expressions of insulin-like growth factor I expression and transforming growth factor-ß1 than the control group (p = 0.009 and p < 0.001, respectively) in diabetic wounds after treatment. The electrospun PLGA-based saxagliptin membranes exhibited excellent biomechanical and biological features that enhanced diabetic wound closure and increased the antioxidant activity, cellular granulation, and functionality.

16.
IBRO Neurosci Rep ; 13: 426-435, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36386599

RESUMO

Background: Chronic surgical anaesthesia and uncontrolled hyperglycemia are bidirectional risk factors for the development of psychiatric, cerebrovascular, and cardiovascular diseases. Objective: The current study was designed to elucidate the neuroprotective effects of anti-diabetic agents in pre and post-surgical anaesthesia exposure on diabetic ischemic rats. Methods: The diabetes type-2 was induced and rats having more than 250 gm/dl blood glucose levels were considered for study. Administration of anaesthetic agents (ketamine 100 mg/kg IP, xylazine 10 mg/kg IP) were done pre and post MCAo surgery for 7 days. The treatment with anti-diabetic agents (voglibose, saxagliptin, repaglinide, dapagliflozin) was carried out after 7 days of Post MCAo surgery for one week. After treatment, assessment of neurobehavioral function was carried out using Morris Water Maze. After that, brains were excised and bloods were collected from all groups subjected for assessment of neuromodulator levels, oxidative stress parameters, serum biochemical biomarkers. Results: The treatment with voglibose and saxagliptin not only improved neuromodulator levels statistically significant (p < 0.001) and cognitive profile but also significantly improved (p < 0.01) overall stroke serum biomarkers (Serum Glucose, GGT, CRP, CK-MB, LDH). Conclusion: The results of the present study, suggested that chronic exposure of anaesthesia worsens the cognition and increases risk of stroke biomarkers in diabetic conditions. We can conclude that voglibose, saxagliptin, and dapagliflozin can significantly improve the postoperative mortality, morbidity, and cognitive dysfunction caused by post-surgical stress and chronic anaesthesia-induced cognitive dysfunction.

17.
Eur J Clin Pharmacol ; 78(12): 1935-1944, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36214883

RESUMO

PURPOSE: The purpose of this study is to investigate the effect of sildenafil a CYP3A4 substrate and inhibitor on the pharmacokinetics and safety of saxagliptin. METHODS: Eighteen healthy volunteers were recruited in sequential; single-center study to determine pharmacokinetic parameters of saxagliptin and sildenafil, and (AUC0-∞), (AUC0-t); Cmax; tmax; t½, ke; ka were measured using validated LC-MS/MS method. Therapeutic doses were given as follows: Sildenafil 50 mg single dose on day one, then washout period from day two till day eight. Saxagliptin 5 mg once/day was given from day 9 till day 12; then on day 13, the two drugs were co-administered. Blood samples for pharmacokinetic analysis were collected on days 1 and 13 for sildenafil and on days 12 and 13 for saxagliptin. RESULTS: Saxagliptin ratios of T/R and 90% CI were 132.1% (122.7-142.3) for AUC0-t, and 167.6% (154.6-181.8) for Cmax. On the other hand, sildenafil pharmacokinetics were not affected. Gmax changed from 93.7 mg/dl to 95.6 mg/dl (P > 0.001) and AUCg0-t from 512.8 ng.h/ml to 532.75 ng.h/ml (P > 0.001) after co-administration of both drugs. CONCLUSION: Sildenafil significantly affected the pharmacokinetic parameters of saxagliptin when co-administered. REGISTRATION: This trial was registered at clinicaltrials.gov under identifier number: [NCT04170790] in November 2019.


Assuntos
Espectrometria de Massas em Tandem , Humanos , Área Sob a Curva , Cromatografia Líquida , Estudos Cross-Over , Interações Medicamentosas , Voluntários Saudáveis , Citrato de Sildenafila
18.
Biomedicines ; 10(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35884882

RESUMO

Dipeptidyl-peptidase-4 (DPP4) inhibitors are novel medicines for diabetes. The SAVOR-TIMI-53 clinical trial revealed increased heart-failure-associated hospitalization in saxagliptin-treated patients. Although this side effect could limit therapeutic use, the mechanism of this potential cardiotoxicity is unclear. We aimed to establish a cellular platform to investigate DPP4 inhibition and the role of its neuropeptide substrates substance P (SP) and neuropeptide Y (NPY), and to determine the expression of DDP4 and its neuropeptide substrates in the human heart. Western blot, radio-, enzyme-linked immuno-, and RNA scope assays were performed to investigate the expression of DPP4 and its substrates in human hearts. Calcein-based viability measurements and scratch assays were used to test the potential toxicity of DPP4 inhibitors. Cardiac expression of DPP4 and NPY decreased in heart failure patients. In human hearts, DPP4 mRNA is detectable mainly in cardiomyocytes and endothelium. Treatment with DPP4 inhibitors alone/in combination with neuropeptides did not affect viability but in scratch assays neuropeptides decreased, while saxagliptin co-administration increased fibroblast migration in isolated neonatal rat cardiomyocyte-fibroblast co-culture. Decreased DPP4 activity takes part in the pathophysiology of end-stage heart failure. DPP4 compensates against the elevated sympathetic activity and altered neuropeptide tone. Its inhibition decreases this adaptive mechanism, thereby exacerbating myocardial damage.

19.
R Soc Open Sci ; 9(6): 220285, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35706663

RESUMO

In this study, highly fluorescent sulfur and nitrogen doped carbon quantum dots (S,N-CQDs) were used as fluorescent nanosensors for direct spectrofluorimetric estimation of each of gliclazide (GLZ) and saxagliptin (SXG) without any pre-derivatization steps for the first time. S,N-CQDs were synthesized employing a simple hydrothermal technique using citric acid and thiosemicarbazide. The produced S,N-CQDs were characterized using different techniques including fluorescence emission spectroscopy, UV spectrophotometry, high-resolution transmission electron microscopy and FT-IR spectroscopy. Following excitation at 360 nm, S,N-CQDs exhibited a strong emission peak at 430 nm. The native fluorescence of S,N-CQDs was quantitatively enhanced by addition of increased concentrations of the studied drugs. The fluorescence enhancement of S,N-CQDs and the concentrations of the studied drugs revealed a wide linear relationship in the range of 30.0-500.0 µM and 75.0-600.0 µM with limits of detection of 5.0 and 10.15 µM for GLZ and SXG, respectively. The proposed method was efficiently used for determination of cited drugs in their commercial tablets with % recoveries ranging from 98.6% to 101.2% and low % relative standard deviation values (less than 2%). The mechanism of interaction between S,N-CQDs and the two drugs was studied. Validation of the proposed method was carried out in accordance with International Conference on Harmonization (ICH) guidelines.

20.
Biomed Chromatogr ; 36(7): e5384, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35434817

RESUMO

A simple, precise, and rapid stability-indicating reversed-phase-HPLC method was developed and validated for the estimation of metformin (MET), dapagliflozin (DAP), and saxagliptin (SAX) combination in bulk and tablet dosage forms. The proposed method uses a Kromasil C18 column (150 × 4.6 mm, 5 µm) with column oven temperature of 30°C and mobile phase containing a mixture of 60% phosphate buffer (pH = 3) and 40% acetonitrile. The flow rate was set at 1.0 mL/min, and the injection volume was 10 µL. The detection was carried out at 230 nm using a photodiode array detector, and the total run time was 4 min. The proposed method was validated according to International Council for Harmonisation (ICH) guidelines for specificity, linearity, precision, accuracy, robustness, and solution stability. The method is linear over the range of 125-750 µg/mL for MET, 1.25-7.5 µg/mL for DAP, and 0.625-3.75 µg/mL for SAX. The observed correlation coefficients (R2 ) for MET, DAP, and SAX are >0.999. The proposed method is precise, and the percentage relative standard deviation was found to be between 0.4 and 0.8. The observed percentage recoveries were between 98.51 and 100.80 for all three compounds. The product was subjected to stress conditions of acid, base, oxidative, thermal, and photolytic degradation. The product was found to degrade significantly in oxidative, acid, and base hydrolysis degradation conditions, and the degradation products were well determined from the active peaks, thus proving the stability-indicating power of the method. The developed and validated stability-indicating reversed-phase-HPLC method was appropriate for quantitative determination of these drugs in pharmaceutical preparations and also for quality control in bulk manufacturing.


Assuntos
Metformina , Adamantano/análogos & derivados , Compostos Benzidrílicos , Cromatografia Líquida de Alta Pressão/métodos , Dipeptídeos , Estabilidade de Medicamentos , Glucosídeos , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...